Nuclear Energy for Remote Applications

23 October, 2014
Michael Kuca (University of Alaska)
Vishal Patel (Texas A&M)
Alana Vilagi (University of Alaska)
Objectives

► Consider GenIII+/GenIV nuclear power plants for remote applications

► ACEP – INL/CSNR collaboration:

POLAR design team
- Taylor Duffin (*University of Utah*)
- Michael Kuca (*University of Alaska*)
- Haley McIntyre (*University of Alaska*)
- Christopher Morrison (*Rensselaer Polytechnic Institute*)
- Vishal Patel (*Texas A&M*)
- Alana Vilagi (*University of Alaska*)

► Opportunities and Obstacles to deployment
Fuel Supply Chain; Consumer Costs

- AK utilities: $0.20 to $1.30 per kWh
- Remote fuel price: $5 to $10 per gallon

Technology: Big Picture

INL (2013)
Technology: Small and Mini

Gen III+ iPWR
- Integrates steam generator into pressure vessel
- Passive designs remove decay heat
- US Modular design compliments macro-grid

Examples (MWe)
- NuScale - 45
- CAREM – 25

Gen IV reactors
- Alternative cooling designs
- Factory sealed, no refueling
- Individual units compliment micro-grid

Examples (MWe)
- Toshiba 4S – 10
- G4M – 25
- SSTAR - 20
CSNR ACEP Collaboration

- CSNR: mini reactors for space exploration
 - Some aspects apply to northern deployment
- Design a mini Gen IV mobile reactor
 - Parameters
 - Safe
 - Transportable
 - Passive cooling, Non-pressurized vessel
 - Less than 10 MWe
 - Long life
POLAR
Passively Operated Lead Arctic Reactor

- 15MWth/5MWe
- PbBi cooled, natural circulation
- Core Outlet Temp 550 °C
- Open air Brayton Cycle 500 °C
- Ship weight 100 ton
POLAR Lifetimes at 5 MWe

<table>
<thead>
<tr>
<th>Case</th>
<th>Approximate Lifetime (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>W-Cermet Fuel Loading 1</td>
<td>6</td>
</tr>
<tr>
<td>W-Cermet Fuel Loading 2</td>
<td>10</td>
</tr>
<tr>
<td>SiC Fuel</td>
<td>15</td>
</tr>
<tr>
<td>UZr Fuel</td>
<td>20</td>
</tr>
</tbody>
</table>
Process Heat Applications

<table>
<thead>
<tr>
<th>Application</th>
<th>Temperature Range (Celsius)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish Processing</td>
<td>30-50</td>
</tr>
<tr>
<td>Greenhouse</td>
<td>45-50</td>
</tr>
<tr>
<td>District Heating</td>
<td>30-80</td>
</tr>
<tr>
<td>Desalination</td>
<td>30-130</td>
</tr>
<tr>
<td>Biomass to Biofuels</td>
<td>200-500</td>
</tr>
<tr>
<td>Oil Production</td>
<td>500-600</td>
</tr>
<tr>
<td>Coal to liquid fuels</td>
<td>800-900</td>
</tr>
<tr>
<td>Hydrogen Production</td>
<td>800-1000</td>
</tr>
</tbody>
</table>
Process Heat Applications
Licensing Issues for SMRs

► Deterministic focus on Light Water Reactors
 • Staffing: 4 operators per shift for total 40-80
 • Core Damage Frequency

► Possible Strategies for Gen IV
 • New Regulations – time consuming
 • Exemptions – complex
 • Risk-Informed Performance-Based Licensing
Risk-Informed Performance-Based Licensing

- Preferred licensing strategy for the Next Generation Nuclear Plant project
- Review process that emphasizes outcomes rather than prescriptive methods for achieving them, providing more flexibility in design
NRC Licensing Timeline

- **Generation III+ Evolutionary Designs**
 - LWRs
 - iPWRs
 - NuScale
 - mPower
 - HI-SMUR
 - W-SMR
 - HTGR

- **Generation IV Revolutionary Designs**
 - NGNP
 - PRISM
 - 4S
 - GIF
 - Gen4

- **Fast Reactors – Closed Fuel Cycle**
- **GIF – DOE Supplied**
- **LMRs**
- **iPWRs**
- **LWRs Gen III+**

- **Time (Y)**
 - 2012
 - 2022
 - 2032
 - 2042

- **Beyond the Horizon**
Alaska Sustainable Energy Act 2010

- Gave Legislature authority to designate land in state for nuclear facility based on economics
 - Health and public safety NRC jurisdiction

- The Department of Environmental Conservation shall adopt regulations governing the issuance of nuclear facility siting permits
 - Authorization program has not been created

- Require municipal approval
Conclusions

• Remote nuclear power plants may be viable in 2020s
 • Continue UA R&D Partnerships

• Lack of super utility; promote stakeholder alliance
 – Military, Civilian, Industry
 – Communicate with state and federal legislators

• Licensing challenges are not insurmountable
 – Early site permitting
 – Siting facilitated through legislature

• Initial capital investments
 – First of a kind funding
 – Master Limited Partnership
References

Ingersoll, et. al. (2004). *Status of Preconceptual Design of the Advanced High-Temperature Reactor (AHTR)*. ORNL.

References

Sabharawall, et. al. (2011). Feasibility study of secondary heat exchanger concepts of the advanced high temperature reactor. INL/EXT-11-23076

Venneri, et. al. (2014). Design of a Tungsten CERMET LEU-NTR. ANS-NETS.

Questions?