WHO IS PRINCETON POWER?

Princeton Power Systems designs and builds high-performance power electronic converters for military and commercial distributed generation applications, and designs and installs complete photovoltaic systems.

Our Distributed Generation Systems, including solar systems, include energy storage, critical load control, backup power, and other advanced features.

Competitive advantages come from patented technologies, and system engineering expertise.

CLEAN POWER, MADE SIMPLE.

201 Washington Road
Princeton, NJ 08540
www.princetonpower.com
sales@princetonpower.com
p. 609.955.5390 x 103

Copyright 2010 Princeton Power Systems, Inc.
COMPANY TIMELINE

- **2001**: Princeton University spin-out
- **2005**: Named NJTC “Early Stage Company of the Year”
- **2007**: PPS installs first photovoltaic array at Princeton University, under a New Jersey Commission on Science and Technology program
- **2008**: Hybrid (wind, solar, battery) systems installed in Bermuda, Virginia, California, New Jersey, awarded BEIP Grant from EDA for job creation
- **2009**: Commercial Inverter UL 1741 listing, “Green Product of the Year” Award, Demand Response Inverter Development begins, $3.3M NJ Clean Energy Manufacturers loan/grant
- **2010**: 18-unit shipment for Gerald Ford Aircraft Carrier, prototype tests completed for Demand Response Inverter, solar systems strategic initiative

Copyright 2010 Princeton Power Systems, Inc.
THE PRINCETON POWER TEAM

Management Team

Dr. Marshall Cohen
President & CEO
- Ph.D. Physics
- 35 years experience in solar and optoelectronics
- Co-founder and last CEO of Sensors Unlimited

Darren Hammell
Co-founder, EVP Business Development
- BSE Computer Science, Princeton University
- CEO of PPS 2001–2009
- NJBiz 40-under-40 Business Leaders

Erik Limpaecher
Co-founder, CTO
- BSE Electrical Engineering, Princeton University

Cynthia Rosen, MBA
Director of Finance & Administration
- BA in Economics, Rutgers
- MBA in Accounting, Seton Hall

Board of Directors

Dr. Ed Zschau (Chairman)
- Congressman, California’s 12th District (Silicon Valley)
- Former CEO Systems Industries, General Manager IBM
- Professor of Entrepreneurship at Princeton University

Dr. Greg Olsen
- Co-founder and CEO of Sensors Unlimited, Epitaxx
- 3rd private astronaut

Stephen Morgan
- Former President, CEO, and Chairman of the Board of Jersey Central Power and Light
- More than 30 years industry experience in all aspects of energy generation and delivery

Dr. Joseph Stach
- Former Executive Director of Massachusetts Technology Collaborative
- CEO of RF Power in Voorhees, NJ

Dr. Rudy Limpaecher
- PhD Plasma Physics, 30+ years experienced in power

Dr. Chris Dries
- Princeton PhD in Electronics
- President & CEO of United Silicon Carbide

Copyright 2010 Princeton Power Systems, Inc.
NAVY SHIPBOARD MOTOR DRIVES

10hp MIL-STD Motor Controller
- Certified to MIL-STD 901, 461, 1399
- Pump/fan motor control capability
- Front-panel and web-based interfaces
- FIRST APPLICATION: Commissioned for the CVN-78 (USS Gerald R. Ford) FlexLab ventilation system

- Distribution agreement with Earl Industries, largest privately-held U.S. Navy contractor
- Additional models under development (25 hp, 50 hp)
- Applications for fire pumps, power distribution, propulsion

Copyright 2010 Princeton Power Systems, Inc.
NAVY ELECTRICAL SYSTEMS and COMPONENTS

- 1.5 MW AC-link Converter
- 3.0 MW/m³ Density
- 98.0% Efficiency
- PCM-1A and PCM 4
- Silicon Carbide (SiC), and
- Silicon switch stacks
GTIB 480-100 GRID-TIED INVERTER

3-phase 100kW DC-AC inverter for grid-tied and backup power applications

96.5% High-efficiency | High-reliability
Microgrid and Backup Power capable

Compatible with:
- Commercial-scale solar arrays
- Commercial-scale wind turbine generators
- Battery banks and energy storage

Copyright 2010 Princeton Power Systems, Inc.
DEMAND RESPONSE INVERTER (DRI)

3-Phase, Grid-tied, Controllable 4-Terminal Power Conditioner

E-QUAD Power Flow Control Technology:
Dynamic control of four bi-directional loads and sources through a central high-frequency link

- PV Connection
- AC Grid Connection
- AC-load Connection
- DC Battery Storage

Five Smart Relays automatically shed low-priority loads in the event of power loss, or in response to price signals and grid needs

Copyright 2010 Princeton Power Systems, Inc.
ENERGY STORAGE SYSTEM

Demand Response Inverter (DRI) and Battery Module

Solar Time-Shifting: Generate predictable, reliable power from intermittent distributed resources, and use it when it is most valuable

Demand Response: Automatically respond to price signals and electric grid needs by shedding loads and increasing power output

Backup Power: Hours or days of power backup by combining batteries with off-grid generators (solar, wind, diesel, etc.)

Microgrid: Maximize facility security and reliability by disconnecting from the electric grid when needed, while managing multiple loads and generators effectively

Optimize Generation Sources: Allow all generators to run at optimum efficiency to significantly reduce fuel use (30-50% reduction)

Copyright 2010 Princeton Power Systems, Inc.
SOLAR ENERGY SYSTEMS
TURNKEY ENERGY STORAGE SYSTEMS

- We design and install turnkey solar systems in the US
- Including advanced systems with Demand Response, Load Control, and Microgrid Capabilities
- Financing options including Power Purchase Agreements (PPAs)

- Turnkey Energy Storage Systems
- 20/40/53 ft ISO Containers
- Large-format prismatic lithium-iron-phosphate cells
- Lead-acid or other technologies available

Copyright 2010 Princeton Power Systems, Inc.
MARKETS AND APPLICATIONS

Distributed Generation
- Solar Arrays
- Commercial Wind Turbines (100kW-500kW)
- Wave/Tidal Power
- Fuel Cells
- Micro-turbines

Utility Energy Storage Systems
- Solar Time-shifting
- Demand Response
- Load-Leveling
- Distributed Generation Integration (“Smart Grids”)

Facility/Agriculture
- Optimized Power Generation
- Backup Power
- Increased Control

Princeton University E-Quad Solar Array Installation

Copyright 2010 Princeton Power Systems, Inc.
TECHNICAL CAPABILITIES

AC-link technology (3 US patents) is a novel 3-phase circuit and control methods.

Benefits of AC-link:

Low dV/dt
Low harmonic distortion
Soft-switching, high-efficiency, low EMI

High-frequency magnetics (20-50kHz switching, nanocrystalline, Sendust materials)

Silicon Carbide (SiC), high-voltage silicon switch stacks

Application software (PV, generator, motor, battery) and communications
RESEARCH & DEVELOPMENT

Our team is constantly learning as we undertake new and interesting projects for our customers. Case studies and application notes, available upon request, describe the integration of PPS electronics into a variety of unique and demanding applications.

From concept... ...to reality
FACILITY

Princeton Power Systems’ headquarters is an advanced facility for the development, testing and manufacturing of high-power electronics systems.

Located on the Sarnoff Corporation’s 254-acre main campus in Princeton, NJ.

Highlights:
1600 Vac 200 A main service
Induction motors, PM motors, and resistive loads up to 800kW
Advanced high-power, high-voltage test and measurement equipment
Testing/Research Areas
MW-scale battery banks
Dynamometer testing cell

PPS has launched an aggressive program to expand its equipment and facilities over the next two years to further develop its state-of-the-art research and manufacturing capabilities