Energy Storage in Remote Australia: conceptions and kerfuffles

Phil Maker <philip.maker@gmail.com>

ACEP/Powerwater Remote Operations

March 2014

Abstract

A review of energy storage in hybrid systems in Remote Australia including the messy bits (well a wee bit at least).
Where: Australia

“I keep six honest serving men, They taught me all I knew, Their names are What and Why and When And How and Where and Who.” – Kipling
Where: Australia

“I keep six honest serving men,
They taught me all I knew,
Their names are What and Why and When And How and Where and Who.” – Kipling

- Energy storage in NT/WA.
Where: Australia

“I keep six honest serving men,
They taught me all I knew,
Their names are What and Why and When And How and Where and Who.” – Kipling

- Energy storage in NT/WA.
- And the conniptions and kerfuffles (see handbook).
Where: Australia

“I keep six honest serving men, They taught me all I knew, Their names are What and Why and When And How and Where and Who.” – Kipling

- Energy storage in NT/WA.
- And the conniptions and kerfuffles (see handbook).
- Feel free to interrupt or redirect me.
Northern Territory/Powerwater

- Early SMA systems for delaying gen switch up (20y lifetime).
- Small ($\approx 50kW$) PV/Wind systems.
- Concentrated PV with limited smoothing.
- Ti Tree, Kalkarindji and Lake Nash ($\approx 1MW$ total PV, 80% peak penetration).
- Medium Pen Rollout.
- High Pen Diesel off systems.
Western Australia/Horizon Power, Verve Energy

In the past:

▶ Wind Diesel systems using Enercon, Vestas and Vergnet.
▶ Low Load Diesels: 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.
▶ Flywheel Energy Storage: 18MWs at 500kW so 36s at rated which is enough to start and synchronise a diesel.

Currently:

▶ PV with hosting capacity limits and mandatory battery smoothing.
▶ It's very hard to get some of them away from Low Load diesels :-(.
▶ But I'm sure something will happen.
Western Australia/Horizon Power, Verve Energy

In the past:

- Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.
Western Australia/Horizon Power, Verve Energy

In the past:

- **Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.**
- **Low Load Diesels:** 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.
Western Australia/Horizon Power, Verve Energy

In the past:

► **Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.**

► **Low Load Diesels:** 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.

► **Flywheel Energy Storage:** 18MWs at 500kW so 36s at rated which is enough to start and synchronise a diesel.
Western Australia/Horizon Power, Verve Energy

In the past:

- **Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.**
- **Low Load Diesels:** 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.
- **Flywheel Energy Storage:** 18MWs at 500kW so 36s at rated which is enough to start and synchronise a diesel.
Western Australia/Horizon Power, Verve Energy

In the past:

- Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.
- Low Load Diesels: 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.
- Flywheel Energy Storage: 18MWs at 500kW so 36s at rated which is enough to start and synchronise a diesel.

Currently:

- PV with hosting capacity limits and mandatory battery smoothing.
Western Australia/Horizon Power, Verve Energy

In the past:

- Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.

- Low Load Diesels: 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.

- Flywheel Energy Storage: 18MWs at 500kW so 36s at rated which is enough to start and synchronise a diesel.

Currently:

- PV with hosting capacity limits and mandatory battery smoothing.

- Its very hard to get some of them away from Low Load diesels :-).
In the past:

- Wind Diesel systems using Enercon, Vestas and Vergnet WTGS.

- Low Load Diesels: 12L/hr at 7% load for 320kW generator which gives us 280kW of spinning reserve and 190kW of step load.

- Flywheel Energy Storage: 18MWs at 500kW so 36s at rated which is enough to start and synchronise a diesel.

Currently:

- PV with hosting capacity limits and mandatory battery smoothing.

- It’s very hard to get some of them away from Low Load diesels :-).

- But I’m sure something will happen.
Some obvious facts?

- A standby loss of $x > k$ kW is a show stopper!
A standby loss of $x > k$ kW is a show stopper!
For example a 500kW for 36s flywheel is useless because its standby losses might be 15kW.
Some obvious facts?

- A standby loss of $x > k$ kW is a show stopper!
 For example a 500kW for 36s flywheel is useless because its standby losses might be 15kW.
 Complete piffle: just resize your PV array by 30kW ($<10\%$) and have a a brandy, its not the standby loss, its the CAPEX/Engineering
Some obvious facts?

- A standby loss of $x > k$ kW is a show stopper!
 For example a 500kW for 36s flywheel is useless because its standby losses might be 15kW.
 Complete piffle: just resize your PV array by 30kW (<10%) and have a a brandy, its not the standby loss, its the CAPEX/Engineering

- Round trip efficiency is important.
Some obvious facts?

- A standby loss of $x > k$ kW is a show stopper! For example, a 500kW for 36s flywheel is useless because its standby losses might be 15kW. **Complete piffle: just resize your PV array by 30kW ($<10\%$) and have a a brandy, its not the standby loss, its the CAPEX/Engineering**

- Round trip efficiency is important. Well perhaps but if you can give me a cheap 500kW solution with 50% round trip efficiency I’m going to buy it.
Some obvious facts?

- A standby loss of $x > k$ kW is a show stopper!
 For example a 500kW for 36s flywheel is useless because its standby losses might be 15kW.

 Complete piffle: just resize your PV array by 30kW (<10%) and have a a brandy, its not the standby loss, its the CAPEX/Engineering

- Round trip efficiency is important. Well perhaps but if you can give me a cheap 500kW solution with 50% round trip efficiency I’m going to buy it.

- Its about energy and load shifting.
Some obvious facts?

- A standby loss of $x > k$ kW is a show stopper! For example, a 500kW for 36s flywheel is useless because its standby losses might be 15kW. **Complete piffle: just resize your PV array by 30kW (<10%) and have a a brandy, its not the standby loss, its the CAPEX/Engineering**

- Round trip efficiency is important. Well perhaps but if you can give me a cheap 500kW solution with 50% round trip efficiency I’m going to buy it.

- It's about energy and load shifting. A bit, it turns out that most of our NT work will be power limited using East/West arrays (or tracking).
Our Past Mistakes

So what have your mob got wrong:
Our Past Mistakes

So what have your mob got wrong:

- TKLN - an award winning design that flogs batteries for no real reason.
Our Past Mistakes

So what have your mob got wrong:

- TKLN - an award winning design that flogs batteries for no real reason.
 Well we do not use the diesel spinning reserve as a resource.
Our Past Mistakes

So what have your mob got wrong:

- TKLN - an award winning design that flogs batteries for no real reason. Well we do not use the diesel spinning reserve as a resource.
- Concentrated Solar that is not integrated in the power system.
Our Past Mistakes

So what have your mob got wrong:

- TKLN - an award winning design that flogs batteries for no real reason.
 Well we do not use the diesel spinning reserve as a resource.
- Concentrated Solar that is not integrated in the power system.
- No Low Load Diesels.
Our Past Mistakes

So what have your mob got wrong:

▶ TKLN - an award winning design that flogs batteries for no real reason.
 Well we do not use the diesel spinning reserve as a resource.

▶ Concentrated Solar that is not integrated in the power system.

▶ No Low Load Diesels.
 Note that running diesels at low load is impossible and anyone who suggests it is a liar and a coward.
Our Past Mistakes

So what have your mob got wrong:

▶ TKLN - an award winning design that flogs batteries for no real reason.
Well we do not use the diesel spinning reserve as a resource.

▶ Concentrated Solar that is not integrated in the power system.

▶ No Low Load Diesels.
Note that running diesels at low load is impossible and anyone who suggests it is a liar and a coward.

▶ And difficulties in sizing sets for loads.
Our Future Mistakes

So our cunning plans are:

- We’ve done a few design studies and a wee bit of modelling.
Our Future Mistakes

So our cunning plans are:

- We’ve done a few design studies and a wee bit of modelling.
- Expecting to use a 30m..2h Li Ion battery system with diesel off capability.
So our cunning plans are:

- We’ve done a few design studies and a wee bit of modelling.
- Expecting to use a 30m..2h Li Ion battery system with diesel off capability. That is we need a power battery, we are not doing load shifting.
Our Future Mistakes

So our cunning plans are:

- We’ve done a few design studies and a wee bit of modelling.
- Expecting to use a 30m..2h Li lon battery system with diesel off capability. That is we need a power battery, we are not doing load shifting.
- Roll out medium penetration first and prove to our operations people that high penetration can work.
Our Future Mistakes

So our cunning plans are:

- We’ve done a few design studies and a wee bit of modelling.
- Expecting to use a 30m..2h Li Ion battery system with diesel off capability. That is we need a power battery, we are not doing load shifting.
- Roll out medium penetration first and prove to our operations people that high penetration can work.
- Continue working on a variety of projects in order to improve system performance.
So what!

▶ Share our lessons learnt in a frank fashion.
So what!

- Share our lessons learnt in a frank fashion.
- Chemistry is difficult.
So what!

- Share our lessons learnt in a frank fashion.
- Chemistry is difficult.
- It's not just the technology.

“Learning is not compulsory... neither is survival” – W. Edwards Deming
So what!

- Share our lessons learnt in a frank fashion.
- Chemistry is difficult.
- It's not just the technology.
- Don’t look at the problem just from your interests, e.g. in my case control systems.
So what!

- Share our lessons learnt in a frank fashion.
- Chemistry is difficult.
- It's not just the technology.
- Don’t look at the problem just from your interests, e.g. in my case control systems.
- Try to replicate projects/share risks,
So what!

- Share our lessons learnt in a frank fashion.
- Chemistry is difficult.
- It's not just the technology.
- Don’t look at the problem just from your interests, e.g. in my case control systems.
- Try to replicate projects/share risks, particularly with remote battery chemistry.

“Learning is not compulsory...
So what!

- Share our lessons learnt in a frank fashion.
- Chemistry is difficult.
- It’s not just the technology.
- Don’t look at the problem just from your interests, e.g. in my case control systems.
- Try to replicate projects/share risks, particularly with remote battery chemistry.

“Learning is not compulsory...
neither is survival” – W. Edwards Deming